Respuesta :

The given question is

[tex]\frac{4\tan x}{1+\tan ^2x}[/tex]

Use the identity

[tex]1+\tan ^2x=\sec ^2x[/tex]

Then replace the denominator by sec^2 (x)

[tex]\frac{4\tan x}{\sec ^2x}[/tex]

Since sec is the reciprocal of cos, then

[tex]\sec ^2x=\frac{1}{\cos ^2x}[/tex]

Replce sec^2(x) by 1/cos^2(x)

[tex]\frac{4\tan x}{\frac{1}{\cos ^2x}}[/tex]

Since denominator of denominator will be a numerator

[tex]4\tan x\times\cos ^2x[/tex]

Use the value of tan

[tex]\tan x=\frac{\sin x}{\cos x}[/tex]

Replace tan by sin/cos

[tex]4\times\frac{\sin x}{\cos x}\times\cos ^2x[/tex]

Reduce cos(x) up with cos(x) down

[tex]\begin{gathered} 4\times\sin x\times\cos x= \\ 4\sin x\cos x \end{gathered}[/tex]

Use the identity

[tex]\sin (2x)=2\sin x\cos x[/tex][tex]4\sin x\cos x=2(2\sin x\cos x)[/tex]

Replace 2 sin(x)cos(x) by sin(2x)

[tex]2(2\sin x\cos x)=2\sin 2x[/tex]

The answer is

2 sin(2x)