Respuesta :
Trigonometry
STEP 1: naming the sides of the triangle
Depending on the angle we are analyzing on the right triangle, each side of it takes a different name. In this case, we are going to name them depending on the angle A. Then,
a: opposite side (to A)
b: adjacent side
c: hypotenuse
STEP 2: formula for cot(A)
We know that the formula for cot(A) is:
[tex]\cot (A)=\frac{\text{adjacent}}{\text{opposite}}[/tex]Replacing it with a and b:
[tex]\begin{gathered} \cot (A)=\frac{\text{adjacent}}{\text{opposite}} \\ \downarrow \\ \cot (A)=\frac{b}{a} \end{gathered}[/tex]Since a = 3:
[tex]\cot (A)=\frac{b}{3}[/tex]STEP 3: finding b
We have an expression for cot(A) but we do not know its exact value yet. First we have to find the value of b to find it out.
We do this using the Pythagorean Theorem. Its formula is given by the equation:
[tex]c^2=a^2+b^2[/tex]Since
a = 3
and
c = √51
Then,
[tex]\begin{gathered} c^2=a^2+b^2 \\ \downarrow \\ \sqrt[]{51}^2=3^2+b^2 \\ 51=9+b^2 \end{gathered}[/tex]solving the equation for b:
[tex]\begin{gathered} 51=9+b^2 \\ \downarrow\text{ taking 9 to the left} \\ 51-9=b^2 \\ 42=b^2 \\ \downarrow square\text{ root of both sides} \\ \sqrt{42}=\sqrt{b^2}=b \\ \sqrt[]{42}=b \end{gathered}[/tex]Then,
b= √42
Therefore, the equation for cot(A) is:
[tex]\begin{gathered} \cot (A)=\frac{b}{3} \\ \downarrow \\ \cot (A)=\frac{\sqrt[]{42}}{3} \end{gathered}[/tex]Answer: D
