What is the volume of the cone rounded to the nearest tenth? The diagram is not drawn to scale. The height of the cone is 19 yd.A) 2646.3 yd^3B) 1462.4 yd^3C) 1039.0 yd^3D) 975.0 yd^3

Answer:
To find the volume of the cone rounded to the nearest tenth
we have that,
Volume of the cone (V) is,
[tex]\frac{1}{3}\pi r^2h[/tex]where r is the radius and h is the height of the cone.
Given that,
r=7 yd
h=19 yd
Substitute the values we get,
[tex]V=\frac{1}{3}\pi(7)^2\times19[/tex]we get,
[tex]V=\frac{931}{3}\pi[/tex]we know that pi is approximately equal to 3.14, Substitute the value we get,
[tex]V=\frac{931}{3}(3.14)[/tex]we get,
[tex]V=974.446\approx975\text{ yd}^3[/tex]Answer is: Option D:
[tex]\begin{equation*} 975\text{ yd}^3 \end{equation*}[/tex]