Solution:
Consider the following expression:
[tex]\frac{8!4!}{7!2!}[/tex]Remember that The factorial function is defined by the product:
[tex]n!\text{ = }1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot\cdot(n-2)\cdot(n-1)\cdot n[/tex]thus, according to this definition, the given expression can be expressed as:
[tex]\frac{8!4!}{7!2!}\text{ = }\frac{(1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8)\text{ (}1\cdot2\cdot3\cdot4\text{)}}{(1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7)(1\cdot2)}[/tex]now, simplifying the previous expression we obtain:
[tex]\text{= }(8)\text{ (}3\cdot4\text{) = }96[/tex]we can conclude that the correct answer is:
[tex]\text{ }96[/tex]