Respuesta :

Solution:

Consider the following expression:

[tex]\frac{8!4!}{7!2!}[/tex]

Remember that The factorial function is defined by the product:

[tex]n!\text{ = }1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot\cdot(n-2)\cdot(n-1)\cdot n[/tex]

thus, according to this definition, the given expression can be expressed as:

[tex]\frac{8!4!}{7!2!}\text{ = }\frac{(1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8)\text{ (}1\cdot2\cdot3\cdot4\text{)}}{(1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7)(1\cdot2)}[/tex]

now, simplifying the previous expression we obtain:

[tex]\text{= }(8)\text{ (}3\cdot4\text{) = }96[/tex]

we can conclude that the correct answer is:

[tex]\text{ }96[/tex]