Respuesta :

From the given picture we can see

ACB is a right triangle at C

AC = b

CB = a

AB = c

Since mSince a = 5 ft

Then to find b and c we will use the trigonometry ratios

[tex]\begin{gathered} \sin A=\frac{a}{c} \\ \sin 60=\frac{5}{c} \end{gathered}[/tex]

Substitute the value of sin 60

[tex]\begin{gathered} \sin 60=\frac{\sqrt[]{3}}{2} \\ \frac{\sqrt[]{3}}{2}=\frac{5}{c} \end{gathered}[/tex]

By using the cross multiplication

[tex]\begin{gathered} \sqrt[]{3}\times c=2\times5 \\ \sqrt[]{3}c=10 \end{gathered}[/tex]

Divide both sides by root 3

[tex]\begin{gathered} \frac{\sqrt[]{3}c}{\sqrt[]{3}}=\frac{10}{\sqrt[]{3}} \\ c=\frac{10}{\sqrt[]{3}} \end{gathered}[/tex]

To find b we will use the tan ratio

[tex]\begin{gathered} \tan 60=\frac{a}{b} \\ \tan 60=\frac{5}{b} \end{gathered}[/tex]

Substitute the value of tan 60

[tex]\begin{gathered} \tan 60=\sqrt[]{3} \\ \sqrt[]{3}=\frac{5}{b} \end{gathered}[/tex]

Switch b and root 3

[tex]b=\frac{5}{\sqrt[]{3}}[/tex]

The exact values of b and c are

[tex]\begin{gathered} b=\frac{5}{\sqrt[]{3}} \\ c=\frac{10}{\sqrt[]{3}} \end{gathered}[/tex]