Add and subtract square roots that need simplification Number 186

Hello!
To solve this exercise, we must simplify these square roots until we have the same square root in both numbers (by the factorization process):
[tex]3\sqrt{98}-\sqrt{128}[/tex]First, let's factorize the square root of 98:
So, we know that:
[tex]\begin{gathered} 3\sqrt{98}=3\sqrt{7^2\times2}=3\sqrt[\cancel{2}]{7\cancel{^2}\times2}=3\times7\sqrt{2}=21\sqrt{2} \\ \\ 3\sqrt{98}=21\sqrt{2} \end{gathered}[/tex]Now, let's do the same with the square root of 128:
So:
[tex]\sqrt{128}=\sqrt{2^2\times2^2\times2^2\times2}^1[/tex]Notice that it also could be written as:
[tex]\begin{gathered} \sqrt{128}=\sqrt{2\times2\times2\times2\times2\times2\times2} \\ \text{ or also} \\ \sqrt{128}=\sqrt{2^7} \end{gathered}[/tex]As we are talking about square roots, it will be easier if we group them in pairs of powers of 2, as I did:
[tex]\sqrt[2]{128}=\sqrt[2]{2^2\times2^2\times2^2\times2^1}[/tex]If the number inside the root has exponent 2, we can cancel this exponent and remove the number inside the root. Then, we can write it outside of the root, look:
[tex]\begin{gathered} \sqrt[2]{128}=\sqrt[2]{2^{\cancel{2}}\times2^{\cancel{2}}\times2^{\cancel{2}}\times2^1} \\ \sqrt[2]{128}=2\times2\times2\sqrt[2]{2^1} \\ \sqrt[2]{128}=8\sqrt[2]{2} \end{gathered}[/tex]So, we just have to solve it now:
[tex]21\sqrt{2}-8\sqrt{2}=\boxed{13\sqrt{2}}[/tex]