Part (A)
The maximum possible upward force acting on the foot is,
[tex]F=2\pi r\sigma[/tex]Substitute the known values,
[tex]\begin{gathered} F=2(3.14)(0.0203\text{ mm)(}\frac{10^{-3}\text{ m}}{1\text{ mm}})(0.0700\text{ N/m)} \\ =8.9\times10^{-6}\text{ N} \end{gathered}[/tex]Thus, the maximum possible upward force on the foot is
[tex]8.9\times10^{-6}\text{ N}[/tex]Part (B)
The maximum force due to six legs can be expressed as,
[tex]6F=mg[/tex]Substitute the known values,
[tex]\begin{gathered} 6(8.9\times10^{-6}N)=m(9.8m/s^2) \\ m=\frac{6(8.9\times10^{-6}\text{ N)}}{9.8m/s^2}(\frac{1kgm/s^2}{1\text{ N}}) \\ =(5.45\times10^{-6}\text{ kg)(}\frac{1\text{ mg}}{10^{-6}\text{ kg}}) \\ =5.45\text{ mg} \end{gathered}[/tex]Thus, the maximum mass of water strider is 5.45 mg.