Respuesta :

To find the inverse function, we can follow the next steps:

First Function

1. Replace x with y as follows:

[tex]y=3x+7\Rightarrow x=3y+7[/tex]

2. Solve the resulting equation for y. Subtract 7 from both sides of the equation:

[tex]x-7=3y+7-7\Rightarrow x-7=3y[/tex]

3. Divide both sides of the equation by 3:

[tex]\frac{(x-7)}{3}=\frac{3}{3}y\Rightarrow y=\frac{(x-7)}{3}=\frac{1}{3}(x-7)=\frac{x}{3}-\frac{7}{3}[/tex]Second Function

We need to repeat the process to obtain the inverse of this function:

1. Replace x with y:

[tex]y=8x\Rightarrow x=8y[/tex]

2. Solve for y. Divide both sides by 8:

[tex]\frac{x}{8}=\frac{8}{8}y\Rightarrow y=\frac{x}{8}[/tex]

In summary, we have that the inverse functions are:

For function

[tex]y=3x+7[/tex]

The inverse function is:

[tex]y=F^{-1}^{}(x)=\frac{(x-7)}{3}[/tex]

And, for the function

[tex]y=8x[/tex]

The inverse function is:

[tex]y=f^{-1}(x)=\frac{1}{8}x[/tex]