Respuesta :

In the given expression

[tex]x^5+32y^3=\ln y[/tex]

To differentiate it with respect to it, we will writ y' for every term of y

The differentiation of

[tex]x^5=5x^{5-1}=5x^4[/tex]

The differentiation of

[tex]32y^3=32(3)y^{3-1}y^{\prime}=96y^2y^{\prime}[/tex]

The differentiation of

[tex]\ln y=\frac{1}{y}(y^{\prime})=y^{-1}y^{\prime}[/tex]

Now let us write all of them in one line

[tex]5x^4+96y^2y^{\prime}=y^{-1}y^{\prime}[/tex]

Put the terms of y' on one side and the other term on the other side

[tex]96y^2y^{\prime}-y^{-1}y^{\prime}=-5x^4[/tex]

Take y' as a common factor

[tex]y^{\prime}(96y^2-y^{-1})=-5x^4[/tex]

Divide both sides by the bracket

[tex]y^{\prime}=\frac{-5x^4}{(96y^2-y^{-1})}[/tex]

Since the given point is (-2, 1), then

x = -2 and y = 1

Substitute them to find y'

[tex]\begin{gathered} y^{\prime}=\frac{-5(-2)^4}{(96\lbrack1\rbrack^2-\lbrack1\rbrack^{-1})}=\frac{-5(16)}{(96-1)}=\frac{-80}{95} \\ y^{\prime}=-\frac{16}{19} \end{gathered}[/tex]

The value of y' is -16/19