Respuesta :

Given:

[tex](5.44\times10^{-18})\div(6.8\times10^{-9})[/tex]

It can be written as follows.

[tex](5.44\times10^{-18})\div(6.8\times10^{-9})=\frac{5.44\times10^{-18}}{6.8\times10^{-9}}[/tex][tex]\text{Use }\frac{1}{10^{-9}}=10^9.[/tex]

[tex]=\frac{5.44\times10^{-18}\times10^9}{6.8^{}}[/tex]

[tex]=\frac{5.44\times10^{-18+9}^{}}{6.8^{}}[/tex]

[tex]=\frac{5.44\times10^{-9}}{6.8^{}}[/tex]

Dividing 5.44 by 6.8, we get

[tex]=0.8\times10^{-9}^{}[/tex]

[tex](5.44\times10^{-18})\div(6.8\times10^{-9})=0.8\times10^{-9}[/tex]

Hence the quotient is

[tex]0.8\times10^{-9}[/tex]