Respuesta :

Given:

[tex]f(x)=2x^2-x+1[/tex][tex]a=2\text{ ; b= -1 ; c=1}[/tex]

Graph opes upwards.

Let the vertex be (h,k)

[tex]h=-\frac{b}{2a}[/tex][tex]h=-\frac{(-1)}{2(2)}[/tex][tex]h=\frac{1}{4}[/tex][tex]k=f(h)[/tex][tex]k=2(\frac{1}{4})^2-\frac{1}{4}+1[/tex][tex]k=2(\frac{1}{16})-\frac{1}{4}+1[/tex][tex]k=\frac{1}{8}-\frac{1}{4}+1[/tex][tex]k=\frac{1-2+8}{8}[/tex][tex]k=\frac{7}{8}[/tex][tex]\text{Vertex}=(\frac{1}{4},\frac{7}{8})[/tex]

Axis of symmetry is

[tex]x=\frac{1}{4}[/tex]

y- intercept

x=0,

y=1

There is no x intercept .

Domain:

[tex](-\infty,\infty)[/tex]

Range:

[tex]\lbrack\frac{1}{4},\infty)[/tex]

The function is increasing:

[tex](\frac{1}{4},\infty)[/tex]

The function is decreasing:

[tex](-\infty,\frac{1}{4})[/tex]