Respuesta :

The equation is given as,

[tex]3e^{5x}=1977[/tex]

Transpose the term,

[tex]\begin{gathered} e^{5x}=\frac{1977}{3} \\ e^{5x}=659 \end{gathered}[/tex]

Taking logarithm on both sides,

[tex]\ln (e^{5x})=\ln (659)[/tex]

Consider the formula,

[tex]\ln (e^m)=e^{\ln (m)}=m[/tex]

Applying the formula,

[tex]\begin{gathered} 5x=\ln (659) \\ x=\frac{1}{5}\cdot\ln (659) \\ x\approx1.30 \end{gathered}[/tex]

Thus, the solution of the given exponential equation is approximately equal to,

[tex]1.30[/tex]