Solution:
Given that the circumference of the circle is
[tex]C=43.96in[/tex]Step 1:
Calculate the radius of the circle
To calculate the radius of the circle, we will use the formula below
[tex]\begin{gathered} C=2\pi r \\ \end{gathered}[/tex]By substituting the values, we will have
[tex]\begin{gathered} C=2\pi r \\ 43.96=2\times\pi\times r \\ 43.96=6.28r \\ \text{divide both sides by 6.28} \\ \frac{6.28r}{6.28}=\frac{43.96}{6.28} \\ r=7in \end{gathered}[/tex]Step 2:
Calculate the area of the circle using the formula below
[tex]\begin{gathered} A=\pi r^2 \\ \text{Where,} \\ \pi \\ r=7in \end{gathered}[/tex]By substituting the values, we will have
[tex]\begin{gathered} A=\pi r^2 \\ A=\pi\times7^2 \\ A=\pi\times49 \\ A=153.94in^2 \end{gathered}[/tex]Hence,
The Area of the circle is = 153.94 in²