Respuesta :

Answer:

A(-1,4) and B(2,0)

Step-by-step explanation:

The quadratic parabola equation is represented as;

[tex]\begin{gathered} y=a(x-h)^2+k \\ \text{where,} \\ (h,k)\text{ is the vertex of the parabola} \end{gathered}[/tex]

Therefore, if the given vertex (2,-5) and the other given point (-1,-1), substitute into the equation and solve for the constant ''a'':

[tex]\begin{gathered} -1=a(-1-2)^2-5 \\ -1=9a-5 \\ 9a=4 \\ a=\frac{4}{9} \end{gathered}[/tex]

Hence, the equation for the parabola:

[tex]f(x)=\frac{4}{9}(x-2)^2-5[/tex]

Now, for the line since it is a horizontal line, the equation would be:

[tex]g(x)=5[/tex]

Then, for (f+g)(x):

[tex]\begin{gathered} (f+g)(x)=\frac{4}{9}(x-2)^2-5+5 \\ (f+g)(x)=\frac{4}{9}(x-2)^2 \end{gathered}[/tex]

Then, the graph for the composite function and the points that lie on the graph:

A(-1,4) and B(2,0)

Ver imagen RheaganN631917