Complete the table and use the results to find the indicated limit.

Given the function:
[tex]k(x)=\frac{x^3-x-6}{x-2}[/tex]when x = 1.9
[tex]k(x)=\frac{1.9^3-1.9-6}{1.9-2}=\frac{-1.041}{-0.1}=10.41[/tex]when x = 1.999
[tex]k(x)=\frac{1.999^3-1.999-6}{1.999-2}=\frac{-0.0109944}{-0.001}=10.994001[/tex]When x = 2.001
[tex]k(x)=\frac{2.001^3-2.001-6}{2.001-2}=\frac{0.011006}{0.001}=11.006[/tex]When x = 2.1
[tex]k(x)=\frac{2.1^3-2.1-6}{2.1-2}=\frac{1.161}{0.1}=11.61[/tex]so, the limit of the function k(x) = 11
The answer is option A. 11