Respuesta :

We have to solve the integral:

[tex]\int ^4_03x^2e^{x3}dx[/tex]

We will apply a variable substitution in order to simplify the solution. We have a hint when we see that the derivative of x^3 is 3x^2, that is part of the factors.

[tex]\begin{gathered} u=x^3\Rightarrow du=(3x^2)dx \\ x=0\Rightarrow u=0^3=0 \\ x=4\Rightarrow u=4^3=64 \end{gathered}[/tex]

Then, we can write:

[tex]\int ^4_03x^2e^{x3}dx=\int ^4_0e^{x3}(3x^2)dx=\int ^{64}_0e^udu[/tex]

Then, we have a simpler integral to solve:

[tex]\int ^{64}_0e^udu=e^u+C=e^{64}-e^0=e^{64}-1[/tex]

The exact solution is e^64-1.