Respuesta :

In the given triangle :

FD = 25, FE = 7, DE = 24

SinD

From the trignometric ratio of sin: It express as the ratio of measurement of the side opposite to the angle to the measurement of hypotenuse of triangle DEF,

So, the SinD is express as :

[tex]\begin{gathered} \sin D=\frac{Opposite\text{ side}}{Hypotenuse} \\ \sin D=\frac{FE}{DF} \\ \sin D=\frac{7}{25} \end{gathered}[/tex]

sin D = 7/25

cos F

From the trignometric ratio of cos : It expresses as the ratio of measurement of the side adjacent to the angle and to the hypotenuse of the triangle

So, the Cos F is express as :

[tex]\begin{gathered} \cos F=\frac{Adjacent\text{ side}}{Hypotenuse} \\ \cos F=\frac{FE}{DF} \\ \cos F=\frac{7}{25} \end{gathered}[/tex]

cos F = 7/25

Sin F

From the trignometric ratio of sin: It express as the ratio of measurement of the side opposite to the angle to the measurement of hypotenuse of triangle DEF,

so, Sin F is express as :

[tex]\begin{gathered} \sin F=\frac{Opposite\text{ side}}{Hypotenuse} \\ \sin F=\frac{DE}{DF} \\ \sin F=\frac{24}{25} \end{gathered}[/tex]

sin F = 24/25

Answer :

sin D = 7/25

cos F = 7/25

sin F = 24/25