We have that the sample consist in n=13 students. The percentile formula is given by
[tex]P_x=\frac{x}{100}\times n\text{ position}[/tex]where x denotes the percentaje. In the first case, p=38, then, we have
[tex]\begin{gathered} P_{38}=\frac{38}{100}\times13\text{ position} \\ P_{38}=4.94\text{ position} \end{gathered}[/tex]then, we get
[tex]P_{38}=41[/tex]that is, P_38 corresponds to 41 miles driven.
In the second case, by substituting x=60 in our formula, we get
[tex]\begin{gathered} P_{60}=\frac{60}{100}\times13\text{ position} \\ P_{60}=7.8\text{ position} \end{gathered}[/tex]which gives
[tex]P_{60}=56[/tex]that is, P_60 corresponds to 56 miles driven.
Then, the answers are:
[tex]P_{38}=41[/tex]This means that approximately 38% of the data lie below 41, when the data are ranked.
[tex]P_{60}=56[/tex]This means that approximately 60% of the data lie below 56, when the data are ranked.