A concave mirror has a focal length of 0.50 m. If an object produces a virtual image 0.19 m from the mirror, where is it located?

Respuesta :

In order to calculate the object's position, we can use the formula below:

[tex]\frac{1}{f}+\frac{1}{d_o}+\frac{1}{d_i}[/tex]

Where f is the focal length, do is the object's position and di is the image's position.

Using f = 0.5 m and di = -0.19 m (we use a negative value because the image is virtual), we have:

[tex]\begin{gathered} \frac{1}{0.5}=\frac{1}{d_o}+\frac{1}{-0.19}\\ \\ 2=\frac{1}{d_o}-5.263\\ \\ \frac{1}{d_o}=2+5.263\\ \\ \frac{1}{d_o}=7.263\\ \\ d_o=\frac{1}{7.263}\\ \\ d_o=0.14\text{ m} \end{gathered}[/tex]

Therefore the object is at 0.14 meters from the mirror.