LanaCharles almn on the coordinate plane what is the perimeter of a ALMN round to the nearest unit

The Solution:
Given the graph below:
We are required to find the perimeter of the triangle LMN rounded to the nearest unit.
Step 1:
Find the distance LM, where L(-3,2) and M(3,5)
By the formula for distance between two points, we have
[tex]LM=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]Where,
[tex]\begin{gathered} x_1=-3 \\ y_1=2 \\ x_2=3 \\ y_2=5 \end{gathered}[/tex]Substituting, we get
[tex]LM=\sqrt[]{(3--3)^2+(5-2)^2}=\text{ }\sqrt[]{6^2+7^2}=\text{ }\sqrt[]{85}=9.2195[/tex]Step 2:
Find the distance LN:
[tex]LN=12[/tex]Step 3:
Find the distance MN, where M(3,5) and N(9,2)
[tex]MN=\sqrt[]{(9-3)^2+(2-5)^2}=\text{ }\sqrt[]{6^2+(-3)^2}=\text{ }\sqrt[]{45}=6.7082[/tex]Step 4:
The perimeter is:
[tex]\text{ Perimeter=LM+MN+LN=9.2195+6.7082+12=27.9277}\approx28\text{ units}[/tex]Therefore, the correct answer is 28 units.