The sides of triangle ABC are: AB = 6 cm,BC = 12 cm, AC = 10cm. K, M and P arethe midpoints of the sides AB, BC and AC respectivelyare the midpoints of the sides and the midpoints of the sides. Calculate the perimeter of KMP.

Answer: By inspecting the triangle we can come up with the following relationships, using the proportionality:
[tex]\begin{gathered} \frac{12}{10}=\frac{6}{x}\rightarrow(1) \\ \frac{12}{6}=\frac{6}{y}\rightarrow(2) \\ \frac{6}{12}=\frac{3}{z}\rightarrow(3) \end{gathered}[/tex]Solving the three equations, (1) (2) and (3) gives the answer for x,y,z which are the three sides of the smaller triangle, the steps are as follows:
[tex]\begin{gathered} x=KM=5 \\ y=MP=3 \\ z=KP=6 \end{gathered}[/tex]Therefore the perimeter is as follows:
[tex]\begin{gathered} P=x+y+x=5+3+6=14 \\ P_{(KMP)}=14 \end{gathered}[/tex]