The given data plot will look thus:
a) Building a model using just the 1999 and 2019 years:
[tex]\begin{gathered} 1999\rightarrow0\rightarrow2196 \\ 2019\rightarrow20\rightarrow7186 \\ \text{Havng} \\ x_1=0,y_1=2196 \\ x_2=20,y_2=7186 \\ \frac{y-y_1}{x-x_1}=\frac{y_2-y_1}{x_2-x_1}_{} \\ \text{The model will be:} \\ P_t=249.5t+2196 \end{gathered}[/tex]b) The cost of insurance in 2030
[tex]\begin{gathered} P_t=249.5t+2196 \\ t=2030-1999=31 \\ \text{The cost of insurance in 2030 therefore will be:} \\ =249.5(31)+2196 \\ =7734.5+2196 \\ =\text{ \$9930.5} \end{gathered}[/tex]c) When do we expect the cost to reach $12,000
[tex]\begin{gathered} P_t=249.5t+2196 \\ 12,000=249.5t+2196 \\ 12000-2196=249.5t \\ 9804=249.5t \\ \frac{9804}{249.5}=\frac{249.5t}{249.5} \\ 39.2946=t \\ Since\text{ t = year -1999} \\ 39.2946+1999=\text{year} \\ 2038.2946=\text{year} \\ Since\text{ we are to give our answer as an exact year} \\ \text{The year will be }2039. \end{gathered}[/tex]