2. The Venn diagram shows the sets U, X and Y.UXY.34 246..9.512:31List the elements of the following sets:(a) X(b) Y(c) U(d) XUY(e) XnY(g) X\Y(h) Y\X(f) X'(1) (XY)2:31

Given the Venn diagram in the question, we can proceed to answer the questions as follow
[tex]\begin{gathered} X=\text{members of the subset X} \\ This\text{ gives: 1,2,3,4, and 5} \end{gathered}[/tex][tex]\begin{gathered} QuestionA\text{ } \\ X=1,2,3,4,and\text{ 5} \\ \end{gathered}[/tex]Question B
Y= members of subset Y
Y =2,4,6, and 8
Question C
U means that we should list all elements in the universal set
U = ALL members of the set
U = 1,2,3,4,5,6,7,8, and 9
Question D
This is the union of both sets X and Y. This means we will list all the members that are found in the 2 subsets
[tex]\text{XUY}=1,2,3,4,5,6,\text{ and 8}[/tex]Question E
[tex]\begin{gathered} \text{XnY means we are to find the elements that are common to both X and Y} \\ \text{XnY}=2\text{ and 4} \end{gathered}[/tex]Question F
X' means that we should find all members of the set except that of X
[tex]X^{\prime}=6,7,8,\text{ and 9}[/tex]Question G
X\Y means that we should list the elements of X that are not found in Y
X\Y= 1,3, and 5
Question H
Y\X means that we should list the elements of Y that are not found in X
Y\X= 6, and 7
Question I
To solve (XnY)' we will follow the steps below
Step 1: Find (XnY)
[tex]\text{XnY}=2\text{ and 4}[/tex]Step 2: Find (XnY)'
[tex]We\text{ will list all elements aside (XnY)}[/tex][tex](XnY)^{^{\prime}}\Rightarrow1,3,5,6,7,8,\text{and 9}[/tex]