Respuesta :

distance=205

Explanation

Step 1

the distance between is given by:

[tex]\begin{gathered} \text{distance=}\sqrt[]{(x_1-x_2)^2+(y_1-y_2)^2} \\ \text{where} \\ P1(x_1,y_1) \\ P2(x_2,y_2) \end{gathered}[/tex]

Let

P1(-6,-3)

P2(194,42)

Step 2

apply the formula.

[tex]\begin{gathered} \text{distance=}\sqrt[]{(x_1-x_2)^2+(y_1-y_2)^2} \\ \text{distance=}\sqrt[]{(-6-194)^2+(-3-42)^2} \\ \text{distance=}\sqrt[]{(-200)^2+-45^2} \\ \text{distance=}\sqrt[]{40000+2025} \\ \text{distance=}\sqrt[]{42025} \\ \text{distance}=205 \end{gathered}[/tex]

I hope this helps you