Respuesta :

The Solution.

By formula, the volume of the planet (sphere) is given as below:

[tex]V=\frac{4}{3}\pi r^3[/tex]

In this case,

[tex]\begin{gathered} V=5.10^{18}km^3 \\ r=\text{?} \end{gathered}[/tex]

Substitting these given values into the formula above, we can solve for r, the radius of the planet.

[tex]\frac{4}{3}\pi r^3=5(10^{18})[/tex]

Dividing both sides by

[tex]\frac{4}{3}\pi[/tex]

We get

[tex]r^3=\frac{5\times10^{18}}{\frac{4}{3}\pi}=\frac{5\times10^{18}}{4.188790205}[/tex]

Taking the cube root of both sides, we have

[tex]\begin{gathered} r=\sqrt[3]{(}\frac{5\times10^{18}}{4.188790205})=(1.060784418\times10^6)km^{} \\ Or \\ r=1060784.418\text{ km} \end{gathered}[/tex]

Thus, the correct answer is 1060784.418km.