Respuesta :

First let's calculate the slope of the straight line

For slopes that are perpendicular to each other we can use the following formula

[tex]m1m2=-1[/tex]

Where

m1 = original slope

m2 = perpendicular slope

[tex]\begin{gathered} m2=-\frac{1}{m1} \\ m2=-\frac{1}{5} \end{gathered}[/tex]

Now for the intersection

[tex]\begin{gathered} b=y-mx \\ b=4-(\frac{-1}{5})\cdot(-5) \\ b=4-1 \\ b=3 \end{gathered}[/tex]

The equation of the line that passes through the point (-5,4) with a slope of -1/5 is

[tex]y=-\frac{1}{5}x+3[/tex]