Respuesta :

4. The triangle has 3 given sides but no angles but we can get the angles using cosine law

[tex]\begin{gathered} \cos R=\frac{t^2+s^2-r^2}{2ts} \\ \cos \text{ R=}\frac{23.7^2+48^2-35^2}{2\times23.7\times48} \\ \cos R=\frac{561.69+2304-1225}{2275.2} \\ \cos R=\frac{1640.69}{2275.2} \\ \cos R=0.7211190225 \\ R=\cos ^{-1}0.7211190225 \\ R=43.8530535482 \\ R=44^{\circ} \end{gathered}[/tex][tex]\begin{gathered} \cos T=\frac{r^2+s^2-t^2}{2rs} \\ \cos T=\frac{35^2+48^2-23.7^2}{2\times35\times48} \\ \cos T=\frac{1225+2304-561.69}{3360} \\ \cos T=\frac{3529-561.69}{3360} \\ \cos T=\frac{2967.31}{3360} \\ \cos T=0.88312797619 \\ T=\cos ^{-1}0.88312797619 \\ T=27.977977493 \\ T=28^{\circ} \end{gathered}[/tex][tex]\begin{gathered} S=180-28-44 \\ S=108^{\circ} \end{gathered}[/tex]

From largest to smallest it will be

[tex]\angle S,\angle R\text{ and}\angle T[/tex]