Respuesta :

The given polynomial expression: (10x² + 8x - 7) - (6x^2 + 4x + 5)

[tex]\begin{gathered} (10x^2+8x-7)-(6x^2+4x+5) \\ \text{Open the brackets:} \\ (10x^2+8x-7)-(6x^2+4x+5)=10x^2+8x-7-6x^2-4x-5 \\ \text{Arrange the like term together:} \\ (10x^2+8x-7)-(6x^2+4x+5)=10x^2-6x^2+8x-4x-7-5 \\ \text{Simplify the like terms together:} \\ (10x^2+8x-7)-(6x^2+4x+5)=4x^2+4x-12 \end{gathered}[/tex]

The resulting polynomial be:

[tex](10x^2+8x-7)-(6x^2+4x+5)=4x^2+4x-12[/tex]

The highest degree of the polynomial is 2 so, the polynomial is Quadratic polynomial

Answer: 4x^2 + 4x - 12, Quadratic polynomial