The convex polygon below has 8 sides. Find the value of x.140°11801270153013401561170

Explanation
The formula for calculating the sum of interior angles in a polygon is ( n − 2 ) × 180 ∘ where is the number of sides.
[tex](n-2)\cdot180=\text{ Sum of internal angles}[/tex]Step 1
find the sum of the internal angles in the given polygon
Let
number of sides = 8
Now, replace
[tex]\begin{gathered} (n-2)\cdot180=\text{ Sum of internal angles} \\ (8-2)\cdot180=\text{ Sum of internal angles} \\ 6\cdot180=\text{Sum of internal angles} \\ 1080=\text{Sum of internal angles}\rightarrow equation(1) \end{gathered}[/tex]Step 2
now, we have the other angles, so
sum of internal angles is:
[tex]\text{angle}1+\text{angle}2+\text{angle}3+\text{angle}4+\text{angle}5+\text{angle}6+\text{angle}7+\text{angle}8=\text{ sum of the internal angles}[/tex]replace
[tex]\begin{gathered} 127+140+118+153+156+117+x+132=\text{ Sum of internal angles} \\ x+943=\text{Sum of internal angles}\rightarrow equation\text{ (2)} \end{gathered}[/tex]hence
[tex]x+945=1080[/tex]subtract 945 in both sides to solve for x
[tex]\begin{gathered} x+945=1080 \\ x+945-945=1080-945 \\ x=135 \end{gathered}[/tex]i hope this helps you