Respuesta :

Solution

Note: The formula to use is

[tex]y=mx+b[/tex]

Where m and b are given by

the b can also be given as

[tex]b=\bar{y}-m\bar{x}[/tex]

The table below will be of help

We have the following from the table

[tex]\begin{gathered} \sum_^x=666 \\ \sum_^y=106.5 \\ \operatorname{\sum}_^x^2=39078 \\ \operatorname{\sum}_^xy=6592.5 \\ n=10 \end{gathered}[/tex]

Substituting directing into the formula for m to obtain m

[tex]\begin{gathered} m=\frac{10(6592.5)-(666)(106.5)}{10(39078)-(666)^2} \\ m=\frac{-5004}{-52776} \\ m=0.09481582538 \\ m=0.095 \end{gathered}[/tex]

to obtain b

[tex]\begin{gathered} \bar{y}=\frac{\operatorname{\sum}_^y}{n} \\ \bar{y}=\frac{106.5}{10} \\ \bar{y}=10.65 \\ and \\ \bar{x}=\frac{\operatorname{\sum}_^x}{n} \\ \bar{x}=\frac{666}{10} \\ \bar{x}=66.6 \end{gathered}[/tex]

Therefore,

[tex]\begin{gathered} b=\bar{y}- m\bar{x} \\ b=10.65-(0.095)(66.6) \\ b=4.323 \end{gathered}[/tex]

Therefore,

[tex]\begin{gathered} y=mx+b \\ y=0.095x+4.323 \end{gathered}[/tex]

To the nearest tenth

[tex]y=0.1x+4.3[/tex]

The least square method didn't give an accurate answer, so we use a graphing tool to estimate instead

Here

m = 0.5 (to the nearest tenth)

b = -23.5 (to the nearest tenth)

The answer is

[tex]\begin{gathered} y=mx+b \\ y=0.5x-23.5 \end{gathered}[/tex]

Ver imagen MadiE499724
Ver imagen MadiE499724
Ver imagen MadiE499724