Consider the right triangle shown below where a=8.09, b=9.4, and c=12.4. Note that θ and ϕ are measured in radians.What is the value of cos(θ)?cos(θ)= What is the value of sin(θ)?sin(θ)=What is the value of tan(θ)?tan(θ)=  What is the value of θ?θ=

Consider the right triangle shown below where a809 b94 and c124 Note that θ and ϕ are measured in radiansWhat is the value of cosθcosθ What is the value of sinθ class=

Respuesta :

By definition

[tex]\cos (angle)=\frac{\text{ adjacent side}}{\text{ hipotenuse}}[/tex]

From the picture

[tex]\begin{gathered} \cos (\theta)=\frac{a}{c} \\ \cos (\theta)=\frac{8.09}{12.4} \\ \cos (\theta)=0.65 \end{gathered}[/tex]

By definition

[tex]\sin (angle)=\frac{\text{ opposite side}}{\text{ hipotenuse}}[/tex]

From the picture:

[tex]\begin{gathered} \sin (\theta)=\frac{b}{c} \\ \sin (\theta)=\frac{9.4}{12.4} \\ \sin (\theta)=0.76 \end{gathered}[/tex]

By definition

[tex]\tan (angle)=\frac{\text{ opposite side}}{\text{ adjacent side}}[/tex]

From the picture

[tex]\begin{gathered} \tan (\theta)=\frac{b}{a} \\ \tan (\theta)=\frac{9.4}{8.09} \\ \tan (\theta)=1.16 \end{gathered}[/tex]

Isolating θ from the previous equations:

[tex]\begin{gathered} \theta=\arccos (0.65)=49.46\text{ \degree}\approx49\text{ \degree} \\ \theta=\arcsin (0.76)=49.46\text{ \degree}\approx49\text{ \degree} \\ \theta=\arctan (1.16)=49.24\text{ \degree}\approx49\text{ \degree} \end{gathered}[/tex]

(The difference between the values is caused by rounding errors)