Respuesta :

The given points are (5, 1) and (-3, 17).

First, we have to find the slope using the following formula.

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Where,

[tex]\begin{gathered} x_1=5 \\ x_2=-3 \\ y_1=1 \\ y_2=17 \end{gathered}[/tex]

Let's use the coordinates above to find the slope.

[tex]m=\frac{17-1}{-3-5}=\frac{16}{-8}\Rightarrow m=-2[/tex]

The slope is -2.

Now, we use the point-slope formula to find the equation.

[tex]y-y_1=m(x-x_1)[/tex]

Let's use the same coordinates x_1 and y_1, and the slope m = -2.

[tex]y-1=-2(x-5)[/tex]

Now, we solve for y to express the equation in slope-intercept form.

[tex]y-1=-2x+10\Rightarrow y=-2x+10+1\Rightarrow y=-2x+11[/tex]

Therefore, the slope-intercept form of the equation is

[tex]y=-2x+11[/tex]