This probability distribution shows thetypical grade distribution for a Geometrycourse with 35 students.GradeEnter a decimal rounded to the nearest hundredth.Enter

Explanation:
The total number of students is
[tex]n(S)=35[/tex]Concept:
To figure out the probability that a student earns grade A,B or C
Will be calculated below as
[tex]P(A,BorC)=P(A)+P(B)+P(C)[/tex]The Probability of A is
[tex]P(A)=\frac{n(A)}{n(S)}=\frac{5}{35}[/tex]The probabaility of B is
[tex]P(B)=\frac{n(B)}{n(S)}=\frac{10}{35}[/tex]The probabaility of C is
[tex]P(B)=\frac{n(B)}{n(S)}=\frac{15}{35}[/tex]Hence,
By substituting the values in the concept, we will have
[tex]\begin{gathered} P(A,BorC)=P(A)+P(B)+P(C) \\ P(A,BorC)=\frac{5}{35}+\frac{10}{35}+\frac{15}{35}=\frac{30}{35} \\ P(A,BorC)=0.857 \\ P(A,BorC)\approx0.86(nearest\text{ }hundredth) \end{gathered}[/tex]Hence,
The final answer is
[tex]0.86[/tex]