Answer:
The equation of the line is;
[tex]y=-\frac{6}{5}x-8[/tex]Explanation:
Given the slope of the line as;
[tex]m=-\frac{6}{5}[/tex]And passes through point;
[tex](-5,-2)[/tex]Using the Point-slope equation to derive the equation of the line;
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-(-2)=-\frac{6}{5}(x-(-5)) \\ y+2=-\frac{6}{5}(x+5) \end{gathered}[/tex]Simplifying;
[tex]\begin{gathered} y+2=-\frac{6}{5}x-\frac{6}{5}(5) \\ y+2=-\frac{6}{5}x-6 \\ y=-\frac{6}{5}x-6-2 \\ y=-\frac{6}{5}x-8 \end{gathered}[/tex]Therefore, the equation of the line is;
[tex]y=-\frac{6}{5}x-8[/tex]