Given:
[tex]7^{\frac{3}{4}}[/tex]Resolving it to its radical form can be gotten based on the general laws of indices.
We have:
[tex]A^{\frac{x}{y}}=\sqrt[y]{A^x}[/tex]I.e. the number is raised to the power of the numerator and then we get the denominator's root of the number obtained.
Thus:
[tex]\begin{gathered} 7^{\frac{3}{4}}=\sqrt[4]{7^3}=\sqrt[4]{343} \\ \sqrt[4]{343}=343^{\frac{1}{4}}=343^{(\frac{1}{2}\times\frac{1}{2})} \\ =343^{(\frac{1}{2}\times\frac{1}{2})}=\sqrt[]{343^{\frac{1}{2}}} \end{gathered}[/tex]Now, we have our value in the square root form as:
[tex]\sqrt[]{343^{\frac{1}{2}}}=\sqrt[]{7^{\frac{3}{2}}}[/tex]