Respuesta :

[tex]y=-\frac{4}{9}x^2+\frac{24}{9}x+12[/tex]

To find the maximun height (y) given a quadratic equation as above you find the coordinates of the vertex (maximum or minimun point of a parabola)

1. Use the next formula to find the x- coordinate of the vertex

[tex]\begin{gathered} y=ax^2+bx+c \\ \\ x=-\frac{b}{2a} \end{gathered}[/tex][tex]\begin{gathered} x=-\frac{\frac{24}{9}}{2(-\frac{4}{9})} \\ \\ x=-\frac{\frac{24}{9}}{-\frac{8}{9}}=\frac{-24}{-8}=3 \end{gathered}[/tex]

2. Use the value of x above to find y-coordinate in the vertex:

[tex]\begin{gathered} y=-\frac{4}{9}(3)^2+\frac{24}{9}(3)+12 \\ \\ y=-\frac{4}{9}(9)+\frac{72}{9}+12 \\ \\ y=-4+8+12 \\ \\ y=16 \end{gathered}[/tex]Then, the maximum height of the diver is 16 feet