Respuesta :

The Solution:

Given:

Required:

Find the values for x, y, and z.

By the Similarity Theorem:

[tex]\Delta BAD\cong\Delta CBD[/tex]

So,

[tex]\begin{gathered} \frac{x}{36}=\frac{36}{6x} \\ \\ \frac{x}{36}=\frac{6}{x} \end{gathered}[/tex]

Cross multiply:

[tex]\begin{gathered} x^2=36\times6 \\ \\ x=\sqrt{36\times6}=6\sqrt{6} \end{gathered}[/tex]

Find y by applying the Pythagorean Theorem on the right triangle CBD:

[tex]\begin{gathered} y^2=36^2+(6\sqrt{6)}^2 \\ \\ y=6\sqrt{42} \end{gathered}[/tex]

Find z:

By the Pythagorean Theorem:

[tex]\begin{gathered} z^2=(42\sqrt{6})^2-(6\sqrt{42})^2 \\ \\ z=36\sqrt{7} \end{gathered}[/tex]

Answer:

[tex]\begin{gathered} x=6\sqrt{6} \\ \\ y=6\sqrt{42} \\ \\ z=36\sqrt{7} \end{gathered}[/tex]

Ver imagen DecariF201193