Prescriptive Test Active515356 57 58 59 60A sphere and a cylinder have the same radius and height. The volume of the cylinder is 50 ft.hlWhat is the volume of the sphere?10TIME RE23

Prescriptive Test Active515356 57 58 59 60A sphere and a cylinder have the same radius and height The volume of the cylinder is 50 fthlWhat is the volume of the class=

Respuesta :

Given:

A sphere and a cylinder have the same radius and height.

The volume of the cylinder is 50 ft.

Required:

We need to find the volume of the sphere.

Explanation:

Let r be the radius of the sphere and cylinder.

Let h be the height of the sphere and cylinder.

We know that the height of the sphere is the diameter.

[tex]h=d=2r[/tex]

Consider the volume of the cylinder formula.

[tex]V=\pi r^2h[/tex]

Substitute V=50ft and h =2r in the formula.

[tex]50=\pi r^2(2r)[/tex][tex]50=2\pi r^3[/tex][tex]\text{ Divide both sides by }2\pi\text{ of the equation.}[/tex]

[tex]\frac{50}{2\pi}=\frac{2\pi r^3}{2\pi}[/tex][tex]\frac{25}{\pi}=r^3[/tex]

Consider the volume of the sphere formula.

[tex]V_1=\frac{4}{3}\pi r^3[/tex]

[tex]Substitute\text{ }r^3=\frac{25}{\pi}\text{ in the formula.}[/tex]

[tex]V_1=\frac{4}{3}\pi\times\frac{25}{\pi}[/tex][tex]V_1=\frac{100}{3}ft^3[/tex]

Final answer:

[tex]V_1=\frac{100}{3}ft^3[/tex]