Answer:
[tex]E\text{ : 361 mmHg}[/tex]Explanation:
Here, we want to get the vapour pressure of the compound at the given temperature
We can use the Clausius-Clapeyron equation for this
Mathematically, we have this as:
[tex]\ln (\frac{P_1}{P_2})\text{ = -}\frac{\Delta H}{R}(\frac{1}{T_1}-\frac{1}{T_2})[/tex]So,let us identify the values:
P1 = 103 mmHg
P2 = ?
ΔH = 28,900
R = 8.31
T1 = 278 K
T2 = 309 K
We now proceed to substitute these values into the equation above as follows:
[tex]\begin{gathered} \ln (\frac{103}{P_2})\text{ = -}\frac{28900}{8.31}(\frac{1}{278}-\frac{1}{309}) \\ \\ \ln (\frac{103}{P_2})\text{ = -3477.74 (}\frac{31}{85902}) \\ \\ \ln (\frac{103}{P_2})\text{ = -1.255} \\ \\ e^{-1.255}\text{ = }\frac{103}{P_2} \\ P_2\text{ = 361 mmHg} \end{gathered}[/tex]