Let the angle be 'x' degrees.
The complement (C) of the corresponding angle will be,
[tex]C=90-x[/tex]And the supplement (S) of the corresponding angle will be,
[tex]S=180-x[/tex]According to the condition given in the problem,
[tex]4C=2S-40^{}[/tex]Substitute the values,
[tex]\begin{gathered} 4(90-x)=2(180-x)-40 \\ 360-4x=360-2x-40 \\ -4x=-2x-40 \\ 4x-2x=40 \end{gathered}[/tex]Simplify the expression further,
[tex]\begin{gathered} 2x=40 \\ x=\frac{40}{2} \\ x=20 \end{gathered}[/tex]Substitute this value of 'x' to obtain the complement and supplement angles as follows,
[tex]\begin{gathered} C=90-20=70 \\ S=180-20=160 \end{gathered}[/tex]Thus, the angle measures 20 degrees, its complement measures 70 degrees, while its supplement measures 160 degrees.