Respuesta :

Explanation:

[tex](6.648\times{10}^9)-(2.9\times{10}^7)[/tex]

We need to factor out like terms in order to solve the above:

[tex]{10}^9=10^7\times10^2[/tex]

Inserting the above into the expression:

[tex]\begin{gathered} (6.648\times{10}^7\times10^2)-(2.9\times{10}^7) \\ 10^{7\text{ }}\text{is common to both expressions} \end{gathered}[/tex][tex]\begin{gathered} (6.648\times{10}^7\times10^2)-(2.9\times{10}^7) \\ 10^7\lbrack(6.648\times10^2)-(2.9)\rbrack \end{gathered}[/tex][tex]\begin{gathered} 6.648\times10^2\text{ = }6.648\times100\text{ = }664.8 \\ 10^7(664.8-2.9)\text{ = }10^7(661.9) \\ 661.9\text{ = 6.619}\times10^2 \\ \end{gathered}[/tex][tex]undefined[/tex]