[tex]\begin{gathered} Vertex\colon\: (-3,-10) \\ Vertex\: form\: equation\colon\: f(x)=(x+3)^2-10 \end{gathered}[/tex]
1) In order to convert from the standard version to the vertex form we'll need to find the vertex of that parabola:
[tex]f(x)=x^2+6x-1[/tex]
We can find the vertex, using these formulas:
[tex]\begin{gathered} x=h=-\frac{b}{2a}=\frac{-6}{2}=-3 \\ k=(-3)^2+6(-3)-1=9-18-1=9-19=-10 \\ V(-3,-10) \end{gathered}[/tex]
So this is the vertex of that parabola at point (-3,-10)
2) Now, note that the coefficient a = 1, and with the vertex, we can now rewrite that equation into the vertex form:
[tex]\begin{gathered} y=a(x-h)^2+k \\ y=(x-(-3))^2+(-10) \\ y=(x+3)^2-10 \end{gathered}[/tex]