find the measure of Angel A? (Round your answer to the nearest whole number)

Answer:
Concept:
To figure out the measure of angle A, we will use the sine rule below
[tex]\begin{gathered} \frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC} \\ where, \\ a=37cm \\ c=29cm \\ C=50^0 \end{gathered}[/tex]By substituting the values, we will have
[tex]\begin{gathered} \frac{a}{sinA}=\frac{c}{sinC} \\ \frac{37}{sinA}=\frac{29}{sin50^0} \\ \end{gathered}[/tex]Cross multiply, we will have
[tex]\begin{gathered} \frac{37}{s\imaginaryI nA}=\frac{29}{s\imaginaryI n50^0} \\ 29\sin A=37\times sin50^0 \\ sinA=\frac{37sin50^0}{29} \\ sinA=0.9774 \\ find\text{ the arcsin} \\ A=\sin^{-1}0.9774 \\ A=77.79^0 \\ A\approx78^0(nearest\text{ whole number\rparen} \end{gathered}[/tex]Hence,
The measure of angle A to the nearest whole number is
[tex]\Rightarrow78^0[/tex]