If g :R → R is given by g(x) = x2 + 3 , find the function f such that (g. f) (x) = 4x2 + 3. A. 3x B. 4x C. 2x D. None of these

Given:
[tex]\begin{gathered} g(x)=x^2+3_{} \\ (g\circ f)(x)=4x^2+3 \end{gathered}[/tex][tex](g\circ f)(x)=g(f(x)[/tex]Let substitute one by one from the given options.
[tex]\begin{gathered} g(3x)=(3x)^2+3 \\ g(3x)=9x^2+3 \end{gathered}[/tex]3x is not the function f.
[tex]\begin{gathered} g(4x)=(4x)^2+3 \\ g(4x)=16x^2+3 \end{gathered}[/tex]4x is not the function f.
[tex]\begin{gathered} g(2x)=(2x)^2+3 \\ g(2x)=4x^2+3 \end{gathered}[/tex]2x is the function f.
[tex]f(x)=2x[/tex]Option C is the final answer.