Respuesta :

Okay, here we have this:

Considering the provided angle, we are going to evaluate the trigonometric functions, so we obtain the following:

Sine:

[tex]\begin{gathered} \sin (-\frac{2\pi}{3}) \\ =-\sin (\frac{2\pi}{3}) \\ =-\cos \mleft(\frac{\pi}{2}-\frac{2\pi}{3}\mright) \\ =-\cos \mleft(-\frac{\pi}{6}\mright) \\ =-\cos \mleft(\frac{\pi}{6}\mright) \\ =-\frac{\sqrt{3}}{2} \end{gathered}[/tex]

Cos:

[tex]\begin{gathered} cos\mleft(-\frac{2\pi}{3}\mright) \\ =\cos \mleft(\frac{2\pi}{3}\mright) \\ =\sin \mleft(\frac{\pi}{2}-\frac{2\pi}{3}\mright) \\ =\sin \mleft(-\frac{\pi}{6}\mright) \\ =-\sin \mleft(\frac{\pi}{6}\mright) \\ =-\frac{1}{2} \end{gathered}[/tex]

Tan:

[tex]\begin{gathered} tan\mleft(-\frac{2\pi\:}{3}\mright) \\ =\frac{\sin (-\frac{2\pi\: }{3})}{\cos (-\frac{2\pi\: }{3})} \\ =\frac{-\frac{\sqrt[]{3}}{2}}{-\frac{1}{2}} \\ =\sqrt[]{3} \end{gathered}[/tex]

Csc:

[tex]\begin{gathered} \csc \mleft(-\frac{2\pi}{3}\mright) \\ =\frac{1}{\sin\left(-\frac{2\pi}{3}\right)} \\ =-\frac{1}{\frac{\sqrt{3}}{2}} \\ =-\frac{2\sqrt{3}}{3} \end{gathered}[/tex]

Sec:

[tex]\begin{gathered} \sec \mleft(-\frac{2\pi}{3}\mright) \\ =\frac{1}{\cos\left(-\frac{2\pi}{3}\right)} \\ =\frac{1}{-\frac{1}{2}} \\ =-2 \end{gathered}[/tex]

Cot:

[tex]\begin{gathered} \cot \mleft(-\frac{2\pi}{3}\mright) \\ =\frac{1}{\tan (-\frac{2\pi}{3})} \\ =\frac{1}{\sqrt[]{3}} \\ =\frac{\sqrt{3}}{3} \end{gathered}[/tex]