Respuesta :

Answer:

Explanation:

Given:

[tex]\sqrt[]{5}(4+\sqrt[]{8})[/tex]

To find the equivalent value, we simplify the given expression first. So,

[tex]\begin{gathered} \sqrt[]{5}(4+\sqrt[]{8}) \\ =(\sqrt[]{5)}(4)+(\sqrt[]{5})(\sqrt[]{8)} \\ Simplify\text{ } \\ =(\sqrt[]{5)}(4)+(\sqrt[]{5})(2\sqrt[]{2}) \end{gathered}[/tex]

We apply the radical rule:

So,

Hence,

[tex]\begin{gathered} =(\sqrt[]{5)}(4)+(\sqrt[]{5})(2\sqrt[]{2}) \\ =4\sqrt[]{5}+2\sqrt[]{10} \end{gathered}[/tex]

Therefore, the answer is:

[tex]undefined[/tex]

Ver imagen TorreC725870
Ver imagen TorreC725870