Which radical expression represents the following after being multiplied and simplified completely?

Answer:
Explanation:
Given:
[tex]\sqrt[]{5}(4+\sqrt[]{8})[/tex]To find the equivalent value, we simplify the given expression first. So,
[tex]\begin{gathered} \sqrt[]{5}(4+\sqrt[]{8}) \\ =(\sqrt[]{5)}(4)+(\sqrt[]{5})(\sqrt[]{8)} \\ Simplify\text{ } \\ =(\sqrt[]{5)}(4)+(\sqrt[]{5})(2\sqrt[]{2}) \end{gathered}[/tex]We apply the radical rule:
So,
Hence,
[tex]\begin{gathered} =(\sqrt[]{5)}(4)+(\sqrt[]{5})(2\sqrt[]{2}) \\ =4\sqrt[]{5}+2\sqrt[]{10} \end{gathered}[/tex]Therefore, the answer is:
[tex]undefined[/tex]