Which of the following is equivalent to sum from n equals 1 to infinity of 10 times quantity negative three eighths end quantity to the power of n?A) 6B)30/11C)- 30/11D)-6

Respuesta :

Given: The below

[tex]\sum_{n\mathop{=}1}^{\infty}10(-\frac{3}{8})^n[/tex]

To Determine the sum to infinity of the given

Solution

Letus re-write the give as below

[tex]\sum_{n\mathop{=}1}^{\infty}10(-\frac{3}{8})^n=10\sum_{n\mathop{=}1}^{\infty}(-\frac{3}{8})^n[/tex]

The sum is give by the formula below

[tex]S=\frac{a}{1-r}[/tex]

From the given, we can found that a and r is as shown below

[tex]\begin{gathered} a=-\frac{3}{8} \\ r=-\frac{3}{8} \end{gathered}[/tex]

Therefore

[tex]\begin{gathered} S=\frac{a}{1-r} \\ 1-r=1-(-\frac{3}{8}) \\ =1+\frac{3}{8} \\ =\frac{8+3}{8} \\ =\frac{11}{8} \\ S=\frac{-\frac{3}{8}}{\frac{11}{8}} \end{gathered}[/tex][tex]\begin{gathered} S=-\frac{3}{8}\div\frac{11}{8} \\ S=-\frac{3}{8}\times\frac{8}{11} \\ S=-\frac{3}{11} \end{gathered}[/tex]

Substituting the sum as shown below

[tex]\begin{gathered} S=\sum_{n\mathop{=}1}^{\infty}(-\frac{3}{8})^n=-\frac{3}{11} \\ Therefore \\ 10\sum_{n\mathop{=}1}^{\infty}(-\frac{3}{8})^n=10\times-\frac{3}{11}=-\frac{30}{11} \end{gathered}[/tex]

Hence, the equivalent to sum to infinity of the given is -30/11, OPTION C