Respuesta :

The given equation is:

[tex]y=\frac{5}{x^2}[/tex]

a. Find the value of dy/dx when x=3

Start by finding the derivative:

[tex]\frac{dy}{dx}=\frac{d(\frac{5}{x^2})}{dx}[/tex]

You also can express 5/x^2 as 5*x^(-2):

[tex]\frac{5}{x^2}=5x^{-2}[/tex]

You know the derivative of a power is:

[tex]\frac{d}{dx}x^n=n\cdot x^{n-1}[/tex]

Apply it to your case:

[tex]\frac{d}{dx}5x^{-2}=(-2)\cdot5\cdot x^{-2-1}=-10\cdot x^{-3}[/tex]

And finally:

[tex]\begin{gathered} x^{-n}=\frac{1}{x^n} \\ \text{Apply it to your equation} \\ \frac{dy}{dx}=\frac{-10}{x^3} \end{gathered}[/tex][tex]\begin{gathered} \text{When x=3} \\ \frac{dy}{dx}=\frac{-10}{3^3}=\frac{-10}{27} \end{gathered}[/tex]

b. Estimate the value of 5/(2.98)^2:

[tex]\begin{gathered} y=\frac{5}{x^2}=\frac{5}{2.98^2}=0.563 \\ \text{Which also means x=2.98} \\ \text{Let's find the derivative when x=2.98} \\ \frac{dy}{dx}=\frac{-10}{2.98^3}=\frac{-10}{26.46}=-0.377 \end{gathered}[/tex]