The function below describes the curve that forms a graph of the cross-section for a parabolic dish. 12x^2−11x+2What is the sum of the zeros for the function?5 over 1213 over 127 over 1211/12

Respuesta :

[tex]12x^2-11x+2[/tex]

start making the function equal to 0,

[tex]12x^2-11x+2=0[/tex]

use the quadratic formula in order to find the zeros of the function,

[tex]\begin{gathered} x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \\ a=12;b=-11;c=2 \\ x=\frac{-(-11)\pm\sqrt{(-11)^2-4(12)(2)}}{2(12)} \\ x=\frac{11\pm\sqrt{121-96}}{24} \\ x=\frac{11\pm\sqrt{25}}{24} \\ x_1=\frac{11+5}{24};x_2=\frac{11-5}{24} \\ x_1=\frac{2}{3};x_2=\frac{1}{4} \end{gathered}[/tex]

finally, add both of the solutions

[tex]\frac{1}{4}+\frac{2}{3}=\frac{3+4\ast2}{12}=\frac{11}{12}[/tex]

Answer:

The sum of the zeros for the function is 11/12