Respuesta :

[tex]\text{Log}_4(\frac{64}{x})=3-Log_4x[/tex]

Here, we want to use logarithmic properties to expand the given expression;

We are going to use the following properties of logarithms;

[tex]\text{Log}_a(\frac{x}{y})=Log_ax-Log_ay[/tex]

Applying that in the case of the question, we have;

[tex]\text{Log}_4(\frac{64}{x})=Log_464-Log_4x[/tex]

Furthermore;

[tex]Log_aa^2=2Log_aa_{_{}}_{}[/tex]

Kindly recall that;

[tex]64=4^3[/tex]

Thus, we have;

[tex]\text{Log}_464=Log_44^3=3Log_44[/tex]

Also, an important logarithmic property to use is that;

[tex]Log_aa=1_{}[/tex]

Thus, we have;

[tex]3og_44\text{ = 3}[/tex]

So finally we have;

[tex]\text{Log}_4(\frac{64}{x})=3-Log_4x[/tex]