use properties of logarithms to expand the logarithmic expression as much as possible.a. 12-log4 xb. 3-log4 xc. 3/xd. -3 log4 x

Here, we want to use logarithmic properties to expand the given expression;
We are going to use the following properties of logarithms;
[tex]\text{Log}_a(\frac{x}{y})=Log_ax-Log_ay[/tex]Applying that in the case of the question, we have;
[tex]\text{Log}_4(\frac{64}{x})=Log_464-Log_4x[/tex]Furthermore;
[tex]Log_aa^2=2Log_aa_{_{}}_{}[/tex]Kindly recall that;
[tex]64=4^3[/tex]Thus, we have;
[tex]\text{Log}_464=Log_44^3=3Log_44[/tex]Also, an important logarithmic property to use is that;
[tex]Log_aa=1_{}[/tex]Thus, we have;
[tex]3og_44\text{ = 3}[/tex]So finally we have;
[tex]\text{Log}_4(\frac{64}{x})=3-Log_4x[/tex]